

解决方案 固体废物中多氯联苯的测定解决方案

关键词

固体废物;多氯联苯;液体样品处理工作站;加压流体萃取仪;Fotector Plus;AutoEVA-20Plus

介绍

浸出毒性就是固体废物遇水浸沥,浸出的物质迁移转化,污染环境,这种危害性称为 浸出毒性。随着社会的发展,危险固废的浸出毒性逐渐被人们所关注,多氯联苯由于 其难降解,可通过食物链富集而直接危害人类的健康,已成为全球性的重要污染物之 一。

因此本实验参考了方法HJ 891-2016《固体废物 多氯联苯的测定 气相色谱-质谱法》、 GB 5083.5附录N《固体废物 多氯联苯的测定 气相色谱法》和HJ 782-2016《固体废物 有机物的提取加压流体萃取法》,简要介绍了使用睿科HPFE高通量加压流体萃取仪萃 取固体废物中的多氯联苯、FotectorPlus高通量全自动固相萃取仪净化, AutoEVA-20Plus全自动平行浓缩仪浓缩后用气相串联质谱进行检测的一套解决方案。

1. 仪器与试剂

仪器

Raykol Auto Prep 200 全自动液体样品处理工作站

Raykol HPFE 高通量加压流体萃取仪;

Raykol Fotector Plus 高通量全自动固相萃取仪:

Raykol MPE 高通量真空平行浓缩仪
Raykol AutoEVA-20Plus 全自动平行浓缩仪;
Agilent 7890B 气相色谱-5977A 质谱联用仪;

耗材

弗罗里硅土固相萃取柱(RayCure Florisil, 1 g/6 mL, RC-204-16945);

试剂

PCBs 标准储备液(10ppm,溶剂为正己烷); 丙酮(色谱纯);正己烷(色谱纯); 无水硫酸钠(西陇);

硅藻土(置于马弗炉中 400 ℃烘 4h,冷却后 贮于玻璃瓶中于干燥器内保存)。

2. 标准工作曲线的配制

使用 Auto Prep 200 液体样品处理工作站可进行混合标准工作溶液的配制。采用正己烷配制浓度为 $50\,\mu\,g/L$, $100\,\mu\,g/L$, $200\,\mu\,g/L$, $500\,\mu\,g/L$, $800\,\mu\,g/L$, $1000\,\mu\,g/L$ 的多氯联苯和替代物的标准溶液,分别加入适量内标标准溶液,使其在标准溶液中的浓度达到 250 $\mu\,g/L$ 的标准曲线。

3. 样品制备

3.1 萃取

称取固体废物 20g,加入适量的硅藻土充分搅拌混匀,装填至 34mL 的萃取池中,同样方法装填好六个萃取池中。将装好样品置于 HPFE 中(同时萃取六个样品),萃取溶剂为正己烷-丙酮(1:1,体积比)混合溶液,系统压力 10 Mpa,萃取温度100℃,静态萃取时间 5 min,萃取吹扫时间为 1 min,冲洗体积为萃取池体积 60%,冲洗时间为 20s。循环萃取两次,收集萃取液,用无水硫酸钠去除水分。

3.2 浓缩

将收集的萃取液放置于 MPE 高通量真空平行浓缩仪中,浓缩温度 40℃,使用正己烷转溶,最后置换溶剂为正己烷,样品浓缩体积至 2mL。

3.3 净化

- 1. 清洗样品通道, 先用正己烷和丙酮(1:9,体积比) 混合溶液清洗上样针。
- 2. 活化: 采用 Florisil 小柱(1g /6 mL)进行富集净化。小柱首先采用 5 mL 正己烷和丙酮(1:9,体积比)混合溶液洗涤小柱,紧接着以正己烷进行活化。
- 3. 上样: 采用 0.5 mL/min 的流速进行上样, 收集流出液。
- 4. 清洗样品瓶:用正己烷清洗样品瓶,收集流出液。
- 5. 淋洗:用正己烷和丙酮(1:9,体积比)混合溶液洗脱固相小柱,洗脱速度为1 mL/min,收集溶液。
- 6. 将收集液用 AutoEVA-20Plus 全自动平行浓缩仪氮吹至 0.5 mL,加入内标,正己烷定容至 1 mL, 待测样品进行气质检测。详细的净化步骤如下:

序号	命令	溶剂	排出	流速 (mL/min)	体积 (mL)	时间 (min)
1	清洗样品通道	丙酮:正己烷1:9				2.9
2	活化	丙酮:正己烷1:9	有机废液	1	5	5.5
3	活化	C6H14	有机废液	1	5	5.4
4	上样		收集	1	2	2.4
5	清洗样品瓶	C6H14	收集	80	3	3.8
6	洗脱	丙酮: 正己烷1: 9	收集	1	4	4.4
7	洗脱	丙酮: 正己烷1: 9	收集	1	4	4.4
8	气推		收集	30	10	1.1
9	结束					
10						

图 1. 净化方法

4. 样品加标处理

在固体废物样品中分别加入10 µL、30 µL、 定容至1 mL,用来测定加标回收率。

60 μL的 10 ppm 的多氯联苯标准浓液,然后按照 4.1~4.3 方法进行实验,加入内标,最后用正己烷 定容至 1 mL,用来测定加标回收率。

5. 气相色谱-质谱联用仪条件

表 1. 气相色谱-质谱联用仪条件

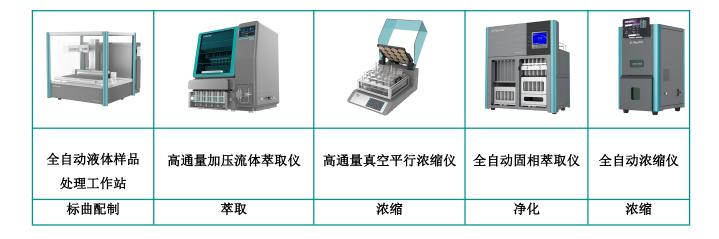
柱子	30m*0, 25mm*0, 25 μ m
进样口温度	280℃
柱流速	1. OmL/min
进样量	1.0 µL
柱温	50℃保持 3min,以 10℃/min 升至 280℃,保持 12min
辅助加热温度	290℃
离子源温度	230℃
四极杆温度	150℃
模式 	全扫描
扫描范围	45amu~450amu
溶剂延迟时间	5min

6. 结果与结论

表 2. 加标样品的回收率

化合物	回收率(%)					
ru u 199	1	2	3	Avg.	RSD (%)	
PCB28	85. 3	86. 1	93. 8	88. 4	4. 6	
PCB52	88. 9	89. 4	92. 6	90. 3	5. 0	

PCB101	90. 5	95. 2	93. 7	93. 1	4. 8
PCB180	92. 5	101. 8	87. 6	94. 0	6.8
PCB77	92. 8	102. 2	97. 2	97. 4	6. 0
PCB81	97. 4	100. 6	95. 9	98. 0	5. 6
PCB105	86. 1	97. 9	84. 5	89. 5	6. 3
PCB114	93. 4	90. 7	88. 3	90. 8	5. 2
PCB118	88. 8	87. 3	83. 6	86. 6	8. 4
PCB123	93. 0	112. 7	100. 9	102. 2	5. 4
PCB126	91. 7	103. 6	107. 9	101. 1	7. 7
PCB156	108. 3	100. 7	94. 8	101. 3	7.8
PCB157	88. 5	94. 2	99. 9	94. 2	7. 7
PCB167	83. 6	109. 0	91. 1	94. 6	8. 1
PCB169	91. 3	93. 6	104. 8	96. 6	9. 0
PCB189	88. 9	89. 9	91. 4	90. 1	7.9


7. 解决方案的优势

本方法采用睿科 Auto Prep 200 全自动液体样 品处理工作站可实现标准品的全自动化配制;

睿科 HPFE 高通量加压流体萃取仪作为土壤提取的必备装置,可在 30 min 同时萃取六个样品,按照工作时间 8 个小时,日处理量可达 96 个,仪器操作简单,可通过触摸屏控制,一键运行,新进实验室人员可以马上入手操作,仪器有四种溶剂,可按照不同的比例进行抽取,无需人工配制。

Fotector Plus 高通量全自动固相萃取仪能同步进行 6 个样品处理,自动连续处理 60 个样品,从活化、上样、淋洗到洗脱等多种基础命令全部实现自动化,大大提高了仪器精度和可靠性,保证了回收率。

MPE 真空平行浓缩仪/AutoEVA-20Plus 全自动浓缩仪,大大地提高了样品前处理效率,真正完全解放实验室人员劳动。

自动化样品前处理解决方案领先供应商

网址: www.raykol.com 电话: 400-885-1816 邮箱: info@raykol.com

